19 research outputs found

    On Image based Enhancement for 3D Dense Reconstruction of Low Light Aerial Visual Inspected Environments

    No full text
    Micro Aerial Vehicles (MAV)s have been distinguished, in the last decade, for their potential to inspect infrastructures in an active manner and provide critical information to the asset owners. Inspired by this trend, the mining industry is lately focusing to incorporate MAVs in their production cycles. Towards this direction, this article proposes a novel method to enhance 3D reconstruction of low-light environments, like underground tunnels, by using image processing. More specifically, the main idea is to enhance the low light resolution of the collected images, captured onboard an aerial platform, before inserting them to the reconstruction pipeline. The proposed method is based on the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm that limits the noise, while amplifies the contrast of the image. The overall efficiency and improvement achieved of the novel architecture has been extensively and successfully evaluated by utilizing data sets captured from real scale underground tunnels using a quadrotor.ISBN för värdpublikation: 978-3-030-17797-3, 978-3-030-17798-0</p

    A new clinical test for sensorimotor function of the hand – development and preliminary validation

    No full text
    Abstract Background Sensorimotor disturbances of the hand such as altered neuromuscular control and reduced proprioception have been reported for various musculoskeletal disorders. This can have major impact on daily activities such as dressing, cooking and manual work, especially when involving high demands on precision and therefore needs to be considered in the assessment and rehabilitation of hand disorders. There is however a lack of feasible and accurate objective methods for the assessment of movement behavior, including proprioception tests, of the hand in the clinic today. The objective of this observational cross- sectional study was to develop and conduct preliminary validation testing of a new method for clinical assessment of movement sense of the wrist using a laser pointer and an automatic scoring system of test results. Methods Fifty physiotherapists performed a tracking task with a hand-held laser pointer by following a zig-zag pattern as accurately as possible. The task was performed with left and right hand in both left and right directions, with three trials for each hand movement. Each trial was video recorded and analysed with a specifically tailored image processing pipeline for automatic quantification of the test. The main outcome variable was Acuity, calculated as the percent of the time the laser dot was on the target line during the trial. Results The results showed a significantly better Acuity for the dominant compared to non-dominant hand. Participants with right hand pain within the last 12 months had a significantly reduced acuity (p < 0.05), and although not significant there was also a similar trend for reduced Acuity also for participants with left hand pain. Furthermore, there was a clear negative correlation between Acuity and Speed indicating a speed-accuracy trade off commonly found in manual tasks. The repeatability of the test showed acceptable intra class correlation (ICC2.1) values (0.68-0.81) and standard error of measurement values ranging between 5.0–6.3 for Acuity. Conclusions The initial results suggest that the test may be a valid and feasible test for assessment of the movement sense of the hand. Future research should include assessments on different patient groups and reliability evaluations over time and between testers

    Remaining Useful Battery Life Prediction for UAVs based on Machine Learning

    No full text
    Unmanned Aerial Vehicles are becoming part of many industrial applications. The advancements in battery technologies played a crucial part for this trend. However, no matter what the advancements are, all batteries have a fixed capacity and after some time drain out. In order to extend the flying time window, the prediction of the time that the battery will no longer be able to support a flying condition is crucial. This in fact can be cast as a standard Remaining Useful Life prognostic problem, similarly encountered in many fields. In this article, the problem of Remaining Useful Life estimation of a battery, under different flight conditions, is tackled using four machine learning techniques: a linear sparse model, a variant of support vector regression, a multilayer perceptron and an advanced tree based algorithm. The efficiency of the overall proposed machine learning techniques, in the field of batteries prognostics, is evaluated based on multiple experimental data from different flight conditions.Konferensartikel i tidskriftCollaborative Aerial Robotic Workers, AEROWORKSIntegrated Process Control based on Distributed In-Situ Sensors into Raw Material and Energy Feedstock, DISIR

    Visual Subterranean Junction Recognition for MAVs based on Convolutional Neural Networks

    No full text
    This article proposes a novel visual framework for detecting tunnel crossings/junctions in underground mine areas towards the autonomous navigation of Micro Aeril Vehicles (MAVs). Usually mine environments have complex geometries, including multiple crossings with different tunnels that challenge the autonomous planning of aerial robots. Towards the envisioned scenario of autonomous or semi-autonomous deployment of MAVs with limited Line-of-Sight in subterranean environments, the proposed module acknowledges the existence of junctions by providing crucial information to the autonomy and planning layers of the aerial vehicle. The capability for a junction detection is necessary in the majority of mission scenarios, including unknown area exploration, known area inspection and robot homing missions. The proposed novel method has the ability to feed the image stream from the vehicles’ on-board forward facing camera in a Convolutional Neural Network (CNN) classification architecture, expressed in four categories: 1) left junction, 2) right junction, 3) left &amp; right junction, and 4) no junction in the local vicinity of the vehicle. The core contribution stems for the incorporation of AlexNet in a transfer learning scheme for detecting multiple branches in a subterranean environment. The validity of the proposed method has been validated through multiple data-sets collected from real underground environments, demonstrating the performance and merits of the proposed module.ISBN för värdpublikation: 978-1-7281-4878-6, 978-1-7281-4879-3</p

    MAV Navigation in Unknown Dark Underground Mines Using Deep Learning

    No full text
    This article proposes a Deep Learning (DL) method to enable fully autonomous flights for low-cost Micro Aerial Vehicles (MAVs) in unknown dark underground mine tunnels. This kind of environments pose multiple challenges including lack of illumination, narrow passages, wind gusts and dust. The proposed method does not require accurate pose estimation and considers the flying platform as a floating object. The Convolutional Neural Network (CNN) supervised image classifier method corrects the heading of the MAV towards the center of the mine tunnel by processing the image frames from a single on-board camera, while the platform navigates at constant altitude and desired velocity references. Moreover, the output of the CNN module can be used from the operator as means of collision prediction information. The efficiency of the proposed method has been successfully experimentally evaluated in multiple field trials in an underground mine in Sweden, demonstrating the capability of the proposed method in different areas and illumination levels.ISBN för värdpublikation: 978-3-90714-402-2, 978-1-7281-8813-3</p

    Vision-based MAV Navigation in Underground Mine Using Convolutional Neural Network

    No full text
    This article presents a Convolutional Neural Network (CNN) method to enable autonomous navigation of low-cost Micro Aerial Vehicle (MAV) platforms along dark underground mine environments. The proposed CNN component provides on-line heading rate commands for the MAV by utilising the image stream from the on-board camera, thus allowing the platform to follow a collision-free path along the tunnel axis. A novel part of the developed method consists of the generation of the data-set used for training the CNN. More specifically, inspired from single image haze removal algorithms, various image data-sets collected from real tunnel environments have been processed offline to provide an estimation of the depth information of the scene, where ground truth is not available. The calculated depth map is used to extract the open space in the tunnel, expressed through the area centroid and is finally provided in the training of the CNN. The method considers the MAV as a floating object, thus accurate pose estimation is not required. Finally, the capability of the proposed method has been successfully experimentally evaluated in field trials in an underground mine in Sweden.ISBN för värdpublikation: 978-1-7281-4878-6, 978-1-7281-4879-3</p

    An Intelligent Injury Rehabilitation Guidance System for Recreational Runners Using Data Mining Algorithms

    No full text
    In recent years the number of people who exercise every day has increased dramatically. More precisely, due to COVID period many people have become recreational runners. Recreational running is a regular way to keep active and healthy at any age. Additionally, running is a popular physical exercise that offers numerous health advantages. However, recreational runners report a high incidence of musculoskeletal injuries due to running. The healthcare industry has been compelled to use information technology due to the quick rate of growth and developments in electronic systems, the internet, and telecommunications. Our proposed intelligent system uses data mining algorithms for the rehabilitation guidance of recreational runners with musculoskeletal discomfort. The system classifies recreational runners based on a questionnaire that has been built according to the severity, irritability, nature, stage, and stability model and advise them on the appropriate treatment plan/exercises to follow. Through rigorous testing across various case studies, our method has yielded highly promising results, underscoring its potential to significantly contribute to the well-being and rehabilitation of recreational runners facing musculoskeletal challenges
    corecore